

MOTHER TERESA WOMEN'S UNIVERSITY KODAIKANAL - 624101

DEPARTMENT OF PHYSICS

B.Sc. PHYSICS

Curriculum Framework, Syllabus and Regulations (Based on TANSCHE Syllabus under Choice Based Credit Systems – CBCS)

(For the candidates to be admitted from the Academic Year 2023-24)

B.Sc., PHYSICS

Preamble

Physics is one of the basic and fundamental sciences. The curriculum for the graduate programme in Physics is revised as per the UGC guidelines on Learning Outcome based Course Framework. The learner-centric courses let the student progressively develop a deeper understanding of various aspects of physics.

The new curriculum offer courses in the core areas of mechanics, acoustics, optics and spectroscopy, electricity and magnetism, atomic and nuclear physics, solid state, electronics and other fields. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation and etc. The students will have deeper understanding of laws of nature through the subjects like classical mechanics, quantum mechanics, statistical physics etc. The problem solving ability of students will be enhanced. The students can apply principles in physics to real life problems. The courses like integrated electronics and microprocessors will enhance the logical skills as well as employability skills. The numerical methods and mathematical physics provide analytical thinking and provides a better platform for higher level physics for research.

The restructured courses with well-defined objectives and learning outcomes, provide guidance to prospective students in choosing the elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc.

IANSCHE KEG	JULATIONS ON LEARNING OUTCOMES-DASED CURRICULUM
	FRAMEWORK FOR
	UNDERGRADUATE EDUCATION
Programme	B.Sc., Physics
Programme	
Code	
Duration	3 years [UG]
Programme	PO1: Disciplinary knowledge:
Outcomes:	Capable of demonstrating comprehensive knowledge and understanding
(These are	of one or more disciplines that form a part of an undergraduate
mere	programme of study
guidelines.	PO2: Communication Skills:
Faculty can	Ability to express thoughts and ideas effectively in writing and orally
create POs	communicate with others using appropriate media; confidently share
based on their	one's views and express herself/himself; demonstrate the ability to listen
curriculum or	carefully; read and write analytically and present complex information in
adopt from	a clear and concise manner to different groups.
UGC or the	PO3: Critical thinking:
University for	Capability to apply the analytic thought to a body of knowledge; analyse
their	and evaluate the proofs, arguments, claims, beliefs on the basis of
Programme)	empirical evidences; identify relevant assumptions or implications;
	formulate coherent arguments; critically evaluate practices, policies and
	theories by following scientific approach.
	PO4: Problem solving:

TANGONE DECINATIONS ON LEADNING OUTCOMES DASED SUDDICINALINA

B.Sc. Physics - Syllabus Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations. **PO5:** Analytical reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints. PO6: Research-related skills: A sense of inquiry and capability for asking relevant/appropriate questions, problem arising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and report the results of an experiment or investigation **PO7: Cooperation/Team work:** Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team **PO8:** Scientific reasoning: Ability draw conclusions to analyse, interpret and from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective. **PO9: Reflective thinking**: Critical sensibility to lived experiences, with self-awareness and reflexivity of both self and society. **PO10 Information/digital literacy:** Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data. **PO 11 Self-directed learning:** Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion. **PO 12 Multicultural competence:** Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups. PO 13: Moral and ethical awareness/reasoning: Ability to embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all

2023

	aspects of work.
	PO 14: Leadership readiness/qualities:
	Capability for mapping out the tasks of a team or an organization, and
	setting direction, formulating an inspiring vision, building a team who
	can help achieve the vision, motivating and inspiring team members to
	engage with that vision, and using management skills to guide people to
	the right destination, in a smooth and efficient way.
	PO 15: Lifelong learning:
	Ability to acquire knowledge and skills, including "learning how to
	learn", that are necessary for participating in learning activities
	throughout life, through self-paced and self-directed learning aimed at
	personal development, meeting economic, social and cultural objectives,
	and adapting to changing trades and demands of work place through
	knowledge/skill development/reskilling.
Programme	PSO1: Placement:
Specific	To prepare the students who will demonstrate respectful engagement
Outcomes:	with others' ideas, behaviors, and beliefs and apply diverse frames of
	reference to decisions and actions.
(These are	PSO 2: Entrepreneur:
mere	To create effective entrepreneurs by enhancing their critical thinking,
guidelines.	problem solving, decision making and leadership skill that will facilitate
Faculty can	start-ups and high potential organizations
create POs	PSO3: Research and Development:
based on their	Design and implement HR systems and practices grounded in research
curriculum or	that comply with employment laws, leading the organization towards
adopt from	growth and development.
UGC or	PSO4: Contribution to Business World:
University for	To produce employable, ethical and innovative professionals to sustain in
their	the dynamic business world.
Programme)	PSO 5: Contribution to the Society:
	To contribute to the development of the society by collaborating with
	stakeholders for mutual benefit

WRITTEN EXAMINATION QUESTION PAPER PATTERN

Theory Paper (Bloom's Taxonomy based)

(Common for	UG, P	G. Certificat	e, Diploma	and P.G.Diplor	ma Programmes)
(,	- ,	· · · · ·		

Intended Learning Skills	Maximum 75 Marks Passing Minimum: 50% Duration: Three Hours
Memory Recall/Example/	Part–A (10x2=20Marks)
Counter Example / Knowledge	Answer ALL questions
about the Concepts/Understanding	Each Question carries 2 marks

	Two questions from each Unit
	Question 1 toQuestion10
	Part–B (5x5=25Marks) Answer
	ALL questions
	Each question carries 5 Marks
Descriptions/Application	Either - or Type
(problems)	Both parts of each question from the same Unit
	Question 11 (a) or 11(b)
	to
	Question 15(a) or 15(b)
	Part-C (3x 10 = 30 Marks)
	Answer any THREE questions
	Each question carries 10 Marks
Analysis/Synthesis / Evaluation	There shall be FIVE questions covering all the
	five units
	Question 16 to Question 20

SYLLABUS FRAMEWORK FOR UG PROGRAMMES (As per TANSCHE –From 2023 – 2024) **B.Sc. PHYSICS**

SEMESTER – I

Part	Course Code	Course Title	Credit	No. of	CIA	ESE	Total
				Hours			Marks
Part - 1	U23TAL11	Language 1 - Tamil	3	6	25	75	100
Part - 2	U23ENL21	Language 2 - English	3	6	25	75	100
Part - 3	U23PHT11	Core 1 Properties of Matter and	5	5	25	75	100
		Acoustics					
	U23PHP11	Core 2 Practical	5	5	25	75	100
	U23PHA11	Subject Based Elective-I (Allied-1	3	4	25	75	100
		Mathematics)					
	U23PHS1A	Skill Enhancement Course 1	2	2	25	75	100
Part - 4	/U23PHS1B	(Advanced Mathematical					
		Physics/Energy Physics)					
	U23PHF11	Foundation Course(Introductory	2	2	25	75	100
		Physics)					
	TOTAL		23	30			

SEMESTER - II

Part	Course Code	Course Title	Credit	No. of Hours	CIA	ESE	Total Marks
Part - 1	U23TAL12	Language 1 - Tamil	3	6	25	75	100
Part - 2	U23TAL22	Language 2 - English	3	6	25	75	100
Part - 3	U23PHT22	Core 3 Heat, Thermodynamics and Statistical Physics	5	5	25	75	100
	U23PHP22	Core 4 Core Practical's	5	5	25	75	100
	U23PHA22	Subject Based Elective -2 (Allied-2 Mathematics)	3	4	25	75	100
Part - 4	U23PHS22	Skill Enhancement Course – 2 (Soft Skills)	2	2	25	75	100
	U23PHS23	Skill Enhancement Course – 3 (Electronics in Everyday life)	2	2	25	75	100
		TOTAL	23	30			

COURSE	FIRST SEMESTER -CORE TH	IEORY 1	
COURSETITLE	PROPERTIES OF MATTER A	ND ACOUSTICS	
CREDITS	5	Course Code: U23PHT11	
COURSE	Study of the properties of matter	leads to information which is of	
OBJECTIVES	practical value to both the physicist and the engineers.It gives us		
	information about the internal	forces which act between the	
	constituent parts of the substance.	Students who undergo this course	
	are successfully bound to get a b	etter insight and understanding of	
	the subject.		

UNIT-IELASTICITY: Hooke's law – stress-strain diagram – elastic constants –Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion- torsional pendulum (with and without masses)UNIT-IIBENDING OF BEAMS:cantilever– expression for Bending moment – expression for depression at he loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending- experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscopeUNIT-IIIFLUID DYNAMICS: Surface tension: definition – molecular forces – excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity.definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula – variation of viscosity with temperatureUNIT-IIVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BULDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity	UNITS	COURSEDETAILS
UNIT-I constants –Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion- torsional pendulum (with and without masses) BENDING OF BEAMS:cantilever– expression for Bending moment – expression for depression at the loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus – non-uniform bending– experiment to determine Young's modulus – non-uniform bending – expression for elevation – expression for departient of determine Young's modulus using microscope FLUID DYNAMICS: Surface tension: definition – molecular forces – excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula – corrections – terminal velocity and Stoke's formula – variation of viscosity with temperature WAYES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajou's figures - free, damped, forced vibrations – resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatus <th></th> <th>ELASTICITY: Hooke's law – stress-strain diagram – elastic</th>		ELASTICITY: Hooke's law – stress-strain diagram – elastic
UNIT-I Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion- torsional pendulum (with and without masses) BENDING OF BEAMS:cantilever – expression for Bending moment – expression for depression at the loaded end of the cantilever – oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscope FLUID DYNAMICS: Surface tension: definition – molecular forces – excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula – corrections – terminal velocity and Stoke's formula – araition of viscosity with temperature UNIT-IV WAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatus UNIT-IV ACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves:		constants –Poisson's ratio – relation between elastic constants and
UNIT-IItwisting couple on a cylinder – rigidity modulus by static torsion- torsional pendulum (with and without masses)UNIT-IIBENDING OF BEAMS:cantilever- expression for Bending moment – expression for depression at the loaded end of the cantilever- oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending- experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscopeUNIT-IIIFLUID DYNAMICS: Surface tension: definition – molecular forces – excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method-variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula – corrections – terminal velocity and Stoke's formula – variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves	UNIT-I	Poisson's ratio – work done in stretching and twisting a wire –
UNIT-II torsional pendulum (with and without masses) UNIT-II BENDING OF BEAMS:cantilever – expression for Bending moment – expression for depression at the loaded end of the cantilever – oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending- experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscope FLUID DYNAMICS: Surface tension: definition – molecular forces – excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiscuille's formula –corrections – terminal velocity and Stoke's formula – variation of viscosity with temperature UNIT-IV WAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatus UNIT-IV ACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves:		twisting couple on a cylinder – rigidity modulus by static torsion–
UNIT-IIBENDING OF BEAMS:cantilever – expression for Bending moment – expression for depression at the loaded end of the cantilever – oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending – experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscopeUNIT-IIIFLUID DYNAMICS: Surface tension: definition – molecular forces – excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula – corrections – terminal velocity and Stoke's formula – variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations – resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		torsional pendulum (with and without masses)
UNIT-IImoment – expression for depression at the loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscopeUNIT-IIIFLUID DYNAMICS: Surface tension: definition – molecular forces– excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula – corrections – terminal velocity and Stoke's formula – variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations – resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer – determination – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		BENDING OF BEAMS: cantilever– expression for Bending
UNIT-IIcantilever – oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscopeFLUID DYNAMICS: Surface tension: definition – molecular forces – excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method-variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula – corrections – terminal velocity and Stoke's formula – variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		moment – expression for depression at the loaded end of the
UNIT-IIexperiment to find Young's modulus – non-uniform bending- experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscopeFLUID DYNAMICS: Surface tension: definition – molecular forces- excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method-variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula – variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer-determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		cantilever– oscillations of a cantilever – expression for time period –
UNIT-IVexperiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscopeUNIT-IVFLUID DYNAMICS: Surface tension: definition – molecular forces- excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method-variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula – variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer-determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves	UNIT-II	experiment to find Young's modulus – non-uniform bending-
UNIT-IVuniform bending – expression for elevation – experiment to determine Young's modulus using microscopeUNIT-IVFLUID DYNAMICS: Surface tension: definition – molecular forces – excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula – variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-VACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		experiment to determine Young's modulus by Koenig's method –
UNIT-IIIdetermine Young's modulus using microscopeFLUID DYNAMICS: Surface tension: definition – molecular forces- excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method-variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula- variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer-determination of frequency using Melde'sstringapparatusUNIT-VACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		uniform bending – expression for elevation – experiment to
FLUID DYNAMICS: Surface tension: definition – molecular forces – excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method-variation of surface tension with temperature <i>Viscosity</i> :definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula – variation of viscosity with temperature WAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatus UNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. <i>Ultrasonic waves:</i> production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		determine Young's modulus using microscope
UNIT-IIIforces- excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method-variation of surface tension with temperature <i>Viscosity</i> :definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula – variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. <i>Ultrasonic waves</i> : production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		FLUID DYNAMICS: Surface tension: definition – molecular
UNIT-IIIspherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula– variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		forces- excess pressure over curved surface – application to
UNIT-IIIsurface tension by Jaegar's method-variation of surface tension with temperature Viscosity:definition - streamline and turbulent flow - rate of flow of liquid in a capillary tube - Poiseuille's formula -corrections - terminal velocity and Stoke's formula- variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) - differential equation of SHM - graphical representation of SHM - composition of two SHM in a straight line and at right angles - Lissajous's figures- free, damped, forced vibrations -resonance and Sharpness of resonance. Laws of transverse vibration in strings -sonometer - determination of AC frequency using sonometer-determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound - decibel - loudness of sound -reverberation - Sabine's reverberation formula - acoustic intensity - factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves - Piezoelectric crystal method -magnetostriction effect - application of ultrasonic waves		spherical and cylindrical drops and bubbles – determination of
UNIT-IIItemperatureViscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula – corrections – terminal velocity and Stoke's formula– variation of viscosity with temperatureWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations – resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		surface tension by Jaegar's method-variation of surface tension with
Viscosity:definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula – variation of viscosity with temperatureWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-VACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves	UNIT-III	temperature
UNIT-IVliquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula– variation of viscosity with temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-VACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		<i>Viscosity</i> :definition – streamline and turbulent flow – rate of flow of
terminal velocity and Stoke's formula– variation of viscosity with temperatureWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-VACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		liquid in a capillary tube – Poiseuille's formula –corrections –
temperatureUNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		terminal velocity and Stoke's formula-variation of viscosity with
UNIT-IVWAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-IVACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		temperature
UNIT-IV(SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-VACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		WAVES AND OSCILLATIONS: Simple Harmonic Motion
UNIT-IVSHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-VACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		(SHM) – differential equation of SHM – graphical representation of
UNIT-IV- Lissajous's figures- free, damped, forced vibrations -resonance and Sharpness of resonance. Laws of transverse vibration in strings -sonometer - determination of AC frequency using sonometer-determination of frequency using Melde'sstringapparatusMelde'sstringapparatusACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound - decibel - loudness of sound -reverberation - Sabine's reverberation formula - acoustic intensity - factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves - Piezoelectric crystal method -magnetostriction effect - application of ultrasonic waves		SHM – composition of two SHM in a straight line and at right angles
UNIT-IVSharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusUNIT-VACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves	IINIT_IV	- Lissajous's figures- free, damped, forced vibrations -resonance and
Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstringapparatusACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		Sharpness of resonance.
of AC frequency using sonometer-determination of frequency using Melde'sstringapparatus Melde'sstringapparatus ACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		Laws of transverse vibration in strings –sonometer – determination
Melde'sstringapparatusACOUSTICS OF BUILDINGS AND ULTRASONICS:Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		of AC frequency using sonometer-determination of frequency using
ACOUSTICS OF BUILDINGS AND ULTRASONICS:Intensity of sound – decibel – loudness of sound –reverberation –Sabine's reverberation formula – acoustic intensity – factorsaffecting the acoustics of buildings.Ultrasonic waves: production of ultrasonic waves – Piezoelectriccrystal method –magnetostriction effect – application of ultrasonicwaves		Melde'sstringapparatus
UNIT-VIntensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		ACOUSTICS OF BUILDINGS AND ULTRASONICS:
UNIT-VSabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		Intensity of sound – decibel – loudness of sound –reverberation –
UNIT-V affecting the acoustics of buildings. Ultrasonic waves: production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves		Sabine's reverberation formula – acoustic intensity – factors
<i>Ultrasonic waves</i> : production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves	UNIT-V	affecting the acoustics of buildings.
crystal method –magnetostriction effect – application of ultrasonic waves		Ultrasonic waves: production of ultrasonic waves – Piezoelectric
waves		crystal method –magnetostriction effect – application of ultrasonic
		waves

UNIT-VI webinars – industry inputs – social accountability – patriotism 1. D.S.Mathur, 2010, Elements of Properties of Matter, S.Chandand Co. 2. BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chandand Co TEXT BOOKS 3. D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound, AtmaRamand sons 4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised edition, Vikas Publishing House. 5. R.Murugesan, 2012, Properties of Matter, S.Chandand Co. 1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers 2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work 2. Hutter
CINIT-VI webmars – industry inputs – social accountability – patholism I. D.S.Mathur, 2010, Elements of Properties of Matter, S.Chandand Co. Image: S.Chandand Co. TEXT BOOKS 3. D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound, AtmaRamand sons 4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised edition, Vikas Publishing House. 5. R.Murugesan, 2012, Properties of Matter, S.Chandand Co. 1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers 2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work 2. Hutsuffarmeric action act
TEXT BOOKS 1. D.S.Mathur, 2010, Elements of Properties of Matter, S.Chandand Co. TEXT BOOKS 2. BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chandand Co 3. D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound, AtmaRamand sons 4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised edition,Vikas Publishing House. 5. R.Murugesan,2012, Properties of Matter, S.Chandand Co. 1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers 2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition,R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. <u>https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work</u> 2. Https://weighten.et/for the properties of the set of the properties of the set of th
1. D.S.Mathur, 2010, Elements of Properties of Matter, S.Chandand Co. 2. BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chandand Co 3. D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound, AtmaRamand sons 4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised edition,Vikas Publishing House. 5. R.Murugesan,2012, Properties of Matter, S.Chandand Co. 1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers 2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition,R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work
S.Chandand Co.2. BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chandand Co TEXT BOOKS 3. D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound, AtmaRamand sons4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised edition, Vikas Publishing House.5. R.Murugesan, 2012, Properties of Matter, S.Chandand Co.1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co.3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India.1. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
2. BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chandand Co TEXT BOOKS 3. D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound, AtmaRamand sons 4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised edition, Vikas Publishing House. 5. R.Murugesan, 2012, Properties of Matter, S.Chandand Co. 1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers 2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. <u>https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work</u> 2. https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work
S.Chandand Co TEXT BOOKS 3. D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound, AtmaRamand sons4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised edition, Vikas Publishing House. 5. R.Murugesan, 2012, Properties of Matter, S.Chandand Co. REFERENCE BOOKS1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India.1. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
TEXT BOOKS 3. D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound, AtmaRamand sons4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised edition, Vikas Publishing House. 5. R.Murugesan, 2012, Properties of Matter, S.Chandand Co.5. R.Murugesan, 2012, Properties of Matter, S.Chandand Co.1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers8. BOOKS2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co.3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India.1. https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work2. http://demonstrates.prover
AtmaRamand sons4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised edition, Vikas Publishing House.5. R.Murugesan, 2012, Properties of Matter, S.Chandand Co.1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co.3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India.1. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound, Second revised edition, Vikas Publishing House. 5. R.Murugesan,2012, Properties of Matter, S.Chandand Co. 1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers 2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work 2. https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work
Second revised edition, Vikas Publishing House. 5. R.Murugesan, 2012, Properties of Matter, S.Chandand Co. 1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers 2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
5. R.Murugesan,2012, Properties of Matter, S.Chandand Co. 1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers 2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work 2. http://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
REFERENCE 1. C.J. Smith, 1960, General Properties of Matter, Orient Longman Publishers REFERENCE 2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, R. Chand and Co. BOOKS 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. <u>https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work</u> 2. <u>http://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work</u>
REFERENCE Publishers BOOKS 2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition,R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work 2. http://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work
REFERENCE 2. H.R.Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition,R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work 2. https://www.biolinscientific.com/blog/what-are-surfactants-and- how-do-they-work
BOOKS Fifth edition,R. Chand and Co. 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work 2. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
 3. A.P French, 1973, Vibration and Waves, MIT Introductory Physics, Arnold-Heinmann India. 1. <u>https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work</u> 2. <u>http://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work</u>
Physics, Arnold-Heinmann India. 1. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
1. <u>https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work</u>
how-do-they-work
2 http://here.em/he
2. http://nyperpnysics.pny-astr.gsu.edu/nbase/permot2.html
3. https://www.youtube.com/watch?v=gT8Nth9NWPM
4. https://www.youtube.com/watch?v=m4u-SuaSu1sandt=3s
WEB 5. https://www.biolinscientific.com/blog/what-are-surfactants-and-
RESOURCES how-do-they-work
6. https://learningtechnologyofficial.com/category/fluid-mechanics-
lab/
7. http://www.sound-physics.com/
8. http://nptel.ac.in/courses/112104026/

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

:

Attheendofthecourse, the student will be able to:

	CO1	Relate elastic behavior in terms of three modulii of elasticity
		and working of torsion pendulum.
COURSEOUT	CO2	Able to appreciate concept of bending of beams and analyze
COMES		the expression, quantify and understand nature of materials.
COMES	CO3	Explain the surface tension and viscosity of fluid and support
		the interesting phenomena associated with liquid surface, soap
		films provide an analogue solution to many engineering

	problems.
CO4	Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains
CO5	Understand the concept of acoustics, importance of constructing buildings with good acoustics. Able to apply their knowledge of ultrasonics in real life, especially in medical field and assimilate different methods of production of ultrasonic waves

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	Μ	Μ	S	Μ	Μ	S	Μ	S
CO2	М	S	S	S	Μ	Μ	S	М	S	S
CO3	S	М	S	Μ	S	S	Μ	S	S	S
CO4	S	S	S	S	S	Μ	S	М	Μ	Μ
CO5	Μ	М	S	S	М	S	S	S	S	М

COURSE	FIRST SEMESTER -CORE PRACTICAL 1						
COURSETITLE	PRACTICAL 1						
CREDITS	5	5 Course Code: U23PHP11					
COURSE	Apply various physics concepts to	Apply various physics concepts to understand Properties of Matter,					
OBJECTIVES	set up experimentation to verify theories, quantify and analyse, able						
	to do error analysis and correlate r	esults					

Properties of Matter

Minimum of Eight Experiments from the list:

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.
- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10. Determination of Young's modulus by non-uniform bending scale and telescope.
- 11. Determination of Young's modulusby cantilever load depression graph.

12. Determination of Young's modulus by cantilever – oscillation method

- 13. Determination of Young's modulus by Koenig's method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searle's double bar method.
- 16. Determination of surface tension and interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseullie's flow method.
- 21. Determinationradius of capillary tube by mercury pellet method.
- 22. Determination of g using compound pendulum.

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

Continuous Inter	nalAssessment	End Semester Examination	Total	Grade					
25		75	100						
Course Coo	le: U23PHS1A								
	ADVANCED N	MATHEMATICAL PHYSICS							
Learning Objectiv	ve:The fundament	tals of matrices and vector calculu	s learnt	in earlier					
course will enable	students to learn	advanced topics and theorems. The	special :	functions					
and applications of partial differential equations will be of use in research at a later stage.									
UNITS	COURSE DETAILS								
	MATRICES: in	ntroduction – special types of matric	es – tran	spose –					
	conjugate- conju	igate transpose- symmetric andanti	symmetr	ric –					
UNIT-I	Hermitian and sl	kew Hermitian – orthogonal and uni	itary – pr	operties					
	– characteristic e	equation – roots and characteristic v	ectors –						
	diagonalization-	Cayley–Hamilton theorem –simple	problem	ıs					
	VECTOR CAL	CULUS:⊽operator – divergence –	second de	erivative					
	of vector function	ns or fields – Laplacianoperator – cu	url of a ve	ector –					
UNIT-II	line integral – lin	ne Integral of a vector field around a	an infinite	esimal					
0111-11	rectangle – curl	of conservative field – surface integ	ral – volu	ıme					
	integral (without	t problem) – Gauss's divergence the	orem and	1 proof –					
	Stroke's theorem	n and proof –simple problems.							
	SPECIAL FUN	CTIONS: definition –Beta function	n – Gamr	na					
	function – evaluation of Beta function – other forms of Beta function								
UNIT-III	– evaluation of Gamma function – other forms of Gamma function –								
	relation between Beta and Gamma functions – simple problems.								
	FROBENIUS N	IETHOD AND SPECIAL FUNC	TIONS:	singular					
	points of second	order linear differential equations a	ind impor	rtance –					
UNIT-IV	singularities of H	Bessels and Laguerreequations, Frob	penius me	ethod					
	and applications to differential equations: Legendre and								
	Hermitedifferential equations – Legendre and Hermitepolynomials –								
	Rodrigues formu	ila –generating function – orthogona	ality						
	PARTIAL DIF	FERENTIAL EQUATIONS:solut	ions to p	artial					
	differential equations using separation of variables - Laplace's								
UNIT-V	equation in problems of rectangular – cylindrical and spherical								
	symmetry – con	ducting and dielectric sphere in an e	xternal u	niform					
	electric field – w	ave equation and its solution for vil	orational	modes					
	01 a stretched str	Ing	hing Have	a. 4 th					
ΤΕΥΤ ΒΟΟΖΩ	1. Mathematica	T Physics, B.D. Gupta-vikas Publisi	ning Hou	se, 4 th					
TEAT BOOKS	Edition (2000)) 1 Dhusiag Satus Drahash (Sultan Cha	(had)						
	2. Mathematica	i Physics, SatyaPrakash (Sultan Cha	ina)						
	1. Mathematica	l Nuciciata C. D. Arfleon H. I. Woher F. F.	Horris (0012 7th					
	Edn Elsovio	r)	.nams (2	2015, 701					
	2 Mathematica	1) I Dhusias H K Dass Dr Dama Va	rma (S. (Thand					
REFERENCE	2. Mathematica	I Filysics–п. к. Dass, DI. Kailla ve	filla (S. C	Jianu					
BOOKS	3 Advanced Er	agineering Mathematics Erwin Vro	waria (W	ilev					
	J. Auvalieeu El.	ignicering mathematics, Erwill KIE	yszig (W	ney					
	4 Mathematica	Physics and Special Relativity M	Das Pk	(Jena					
	and B.K. Das	sh (SrikrishnaPrakashan)	Du0, 1 .1	x. 50110					

ELECTIVE COURSES (EC)

U23PHS1B - ENERGY PHYSICS						
Learning Objec	tive: To get the understanding of the conventional and non-					
conventional energy	gy sources, their conservation and storage systems.					
UNITS	COURSE DETAILS					
	INTRODUCTION TO ENERGY SOURCES: energy consumption					
	as a measure of prosperity – world energy future – energy sources					
UNIT-I	and their availability – conventional energy sources – non-					
	conventional and renewable energy sources - comparison - merits					
	and demerits.					
	SOLAR ENERGY: solar energy Introduction – solar constant – solar					
	radiation at the Earth's surface – solar radiation geometry – Solar					
UNIT-II	radiation measurements – solar radiation data –solar energy storage					
	and storage systems – solar pond – solar cooker – solar water heater					
	 solar greenhouse – types of greenhouses – solar cells. 					
	WIND ENERGY: introduction – nature of the wind – basic principle					
	of wind energy conversion – wind energy data and energy estimation					
UNIT-III	- basic components of Wind Energy Conversion Systems (WECS) -					
	advantages and disadvantages of WECS – applications – tidal energy					
	BIOMASS ENERGY: introduction – classification – biomass					
UNIT-IV	conversion technologies –photosynthesis – fermentation - biogas					
	generation –classification of biogas plants – anaerobic digestion for					
	biogas – wood gasification – advantages and disadvantages.					
	ENERGY STORAGE: importance of energy storage- batteries - lead					
UNIT-V	acid battery -nickel-cadmium battery – fuel cells – types of fuel cells					
	– advantages and disadvantages of fuel cells – applications of fuel					
	cells - hydrogen storage.					
	1. G.D.Rai, Non-Conventional Sources of Energy, Khanna					
	Publishers, 2009, 4 th Edn.					
TEXT BOOKS	2. S P Sukhstme, J K Nayak, Solar Energy, Principles of Thermal					
	2 D. D. Kotheri, K. D. Singel, Dekesh Deien, DHL Learning Dut Ltd					
	2011 2 nd Edn					
	1 John Twidelland Tony Wair, Panawahla Energy Pasources					
	Taylor and Francis 2005 2 nd Edn					
	$2 \text{ S } \Delta$ Abbasi and Nasema Abbasi Renewable Energy sources and					
REFERENCE	their environmental impact PHI Learning Pyt 1 td 2008					
BOOKS	3 M P Agarwal Solar Energy S Chand and Co Ltd. New					
	Delhi 1982					
	4. H. C. Jain, Non-Conventional Sources of Energy, Sterling					
	Publishers, 1986.					

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIRST SEMESTER – FOUNDATION COURSE
COURSE TITLE	U23PHF11 - INTRODUCTORY PHYSICS
CREDITS	5
COURSE	To help students get an overview of Physics before learning their
OBJECTIVES	core courses. To serve as a bridge between the school curriculum
	and the degree programme.

UNITS	COURSE DETAILS
UNIT-I	vectors, scalars –examples for scalars and vectors from physical quantities – addition, subtraction of vectors – resolution and resultant of vectors – units and dimensions– standard physics constants
UNIT-II	different types of forces–gravitational, electrostatic, magnetic, electromagnetic, nuclear –mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces
UNIT-III	different forms of energy– conservation laws of momentum, energy –types of collisions –angular momentum– alternate energy sources– real life examples
UNIT-IV	types of motion– linear, projectile, circular, angular, simple harmonic motions – satellite motion – banking of a curved roads – stream line and turbulent motions – wave motion –comparison of light and sound waves – free, forced, damped oscillations
UNIT-V	surface tension – shape of liquid drop – angle of contact – viscosity –lubricants – capillary flow – diffusion – real life examples– properties and types of materials in daily use- conductors, insulators – thermal and electric
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 D.S. Mathur, 2010, Elements of Properties of Matter, S.Chandand Co BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chandand Co.
REFERENCE BOOKS	1. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, S.Chandand Co.
WEB RESOURCES	 <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/</u> <u>https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSEOUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Apply concept of vectors to understand concepts of Physics and solve problems
	CO2	Appreciate different forces present in Nature while learning about phenomena related to these different forces.
COURSEOUT COMES	CO3	Quantify energy in different process and relate momentum, velocity and energy
	CO4	Differentiate different types of motions they would encounter in various courses and understand their basis
	CO5	Relate various properties of matter with their behaviour and connect them with different physical parameters involved.

MAPPINGWITHPROGRAMOUTCOMES:

 $Mapcourse outcomes ({\bf CO}) for each course with program outcomes ({\bf PO}) in the 3-points scale of STRONG (3), MEDIUM (2) and LOW (1).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	2	3	3	2	2	2
CO3	3	3	3	2	3	3	3	2	3	2
CO4	3	3	3	3	3	3	3	2	2	2
CO5	3	2	3	3	3	3	3	2	2	3

SECOND SEMESTER

COURSE	SECOND SEMESTER – CORE -3 THEORY
COURSETITLE	U23PHT22 - HEAT, THERMODYNAMICS and
	STATISTICAL PHYSICS
CREDITS	5
COURSE	The course focuses to understand a basic in conversion of
OBJECTIVES	temperature in Celsius, Kelvin and Fahrenheit scales. Practical
	exhibition and explanation of transmission of heat in good and bad conductor. Relate the laws of thermodynamics, entropy in everyday
	life and explore the knowledge of statistical mechanics and its
	relation

UNITS	COURSEDETAILS			
	CALORIMETRY: specific heat capacity – specific heat capacity			
	of gases C _P and C _V – Meyer's relation – Joly's method for			
	determination of C_V – Regnault's method for determination of C_P			
UNIT-I	LOWTEMPERATUREPHYSICS: Joule-Kelvin effect – porous			
	plug experiment – Joule-Thomson effect –Boyletemperature –			
	temperature of inversion – liquefaction of gas by Linde's Process –			
	adiabatic demagnetisation.			
	THERMODYNAMICS-I: zeroth law and first law of			
LINIT II	thermodynamics – P-V diagram – heat engine –efficiency of heat			
UNII-11	engine – Carnot's engine, construction, working and efficiency of			
	petrol engine and diesel engines – comparison of engines.			
	THERMODYNAMICS-II: second law of thermodynamics –			
	entropy of an ideal gas – entropy change in reversible and			
	irreversible processes – T-S diagram –thermodynamicalscale of			
UNIT-III	temperature – Maxwell's thermodynamical relations – Clasius-			
	Clapeyron's equation (first latent heat equation) – third law of			
	thermodynamics – unattainability of absolute zero – heat death.			
	HEATTRANSFER: modes of heat transfer: conduction,			
	convection and radiation.			
	<i>Conduction</i> : thermal conductivity – determination of thermal			
	conductivity of a good conductor by Forbe's method –			
UNIT-IV	determination of thermal conductivity of a bad conductor by Lee's			
	disc method.			
	<i>Radiation</i> : black body radiation (Ferry's method) – distribution of			
	energy in black body radiation – Wien's law and Rayleigh Jean's			
	law –Planck's law of radiation – Stefan's law – deduction of			
	Newton's law of cooling from Stefan's law.			

	STATISTICALMECHANICS: definition of phase-space – micro
UNIT-V	and macro states – ensembles –different types of ensembles –
	classical and quantum Statistics – Maxwell-Boltzmann statistics –
	expression for distribution function – Bose-Einstein statistics –
	expression for distribution function – Fermi-Dirac statistics –
	expression for distribution function – comparison of three statistics.
UNIT VI	PROFESSIONAL COMPONENTS: expert lectures –seminars –
0111-11	webinars – industry inputs – social accountability – patriotism
	1. BrijlalandN. Subramaniam, 2000, Heat and Thermodynamics,
	S.Chandand Co.
	2. NarayanamoorthyandKrishnaRao, 1969,Heat,Triveni Publishers,
TEXT BOOKS	Chennai.
	3. V.R.KhannaandR.S.Bedi, 1998 1 st Edition, Text book of Sound,
	Kedharnaath Publish and Co, Meerut
	4. Brijlal and N. Subramanyam, 2001, Waves and
	Oscillations, Vikas Publishing House, New Delhi.
	5. Ghosh, 1996, Text Book of Sound, S.ChandandCo.
	6. R.MurugeshanandKiruthigaSivaprasath, Thermal Physics,
	S.Chandand Co.
	1. J.B.RajamandC.L.Arora, 1976, Heat and Thermodynamics, 8 th
	edition, S.Chandand Co. Ltd.
	2. D.S.Mathur, Heat and Thermodynamics, Sultan Chand and
	Sons.
REFERENCE	3. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th
BOOKS	Edition, S. Chand and Co.
	4. Resnick, HallidayandWalker,2010, Fundamentals of Physics,
	6th Edition.
	5. Sears, Zemansky, Hugh D. Young, Roger A. Freedman, 2021
	University Physics with Modern Physics 15th Edition, Pearson.
	1. https://youtu.be/M_5KYncYNyc
	2. <u>https://www.youtube.com/watch?v=4M72kQulGKkandvl=en</u>
WED	3. Lecture 1: Thermodynamics Part 1 Video Lectures Statistical
VED	Mechanics I: Statistical Mechanics of Particles Physics MIT
RESUUKCES	OpenCourseWare
	4. http://www.freebookcentre.net/Physics/Physics-Books-
	<u>Online.html</u>

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

temperature and heat. Introduce him/her to the field of						
thermometry and explain practical measurements of high						
temperature as well as low temperature physics. Student						
ecific heat						
s the basis						
luctivity,						
•						
e						
implications of the laws of Thermodynamics in diesel and						
Able to analyze performance of thermodynamic systems viz						
efficiency by problems. Gets an insight into thermodynamic						
properties like enthalpy, entropy						
Study the process of thermal conductivity and apply it to good						
and bad conductors. Quantify different parameters related to						
heat, relate them with various physical parameters and analyse						
-						
ase space,						
Develop the						
mi-Dirac .						
ron						

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:main_second} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	Μ	S	S	S	Μ	S	S	Μ	Μ	Μ
CO3	S	S	S	М	S	S	S	М	S	Μ
CO4	S	S	S	S	S	S	S	Μ	Μ	Μ
CO5	S	S	М	S	S	S	М	М	S	Μ

COURSE	SECOND SEMESTER – CORE- 4 - PRACTICAL 2			
COURSETITLE	U23PHP22 - PRACTICAL 2			
CREDITS	5			
COURSE	Apply their knowledge gained about the concept of heat and sound			
OBJECTIVES	waves, resonance, calculate frequency of ac mains set up			
	experimentation to verify theories, quantify and analyse, able to do			
	error analysis and correlate results			
HEAT, OSCILLATIONS, WAVES and SOUND				
Minimum of Eight Experiments from the list:				

- 1. Determination of specific heat by cooling graphical method.
- 2. Determination of thermal conductivity of good conductor by Searle's method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Determination of thermal conductivity of bad conductor by Charlaton's method.
- 5. Determination of specific heat capacity of solid.
- 6. Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphical method),
- 7. Determination of Latent heat of a vaporization of a liquid.
- 8. Determination of Stefan's constant for Black body radiation.
- 9. Verification of Stefan's-Boltzmans law.
- 10. Determination of thermal conductivity of rubber tube.
- 11. Helmholtz resonator.
- 12. Velocity of sound through a wire using Sonometer.
- 13. Determination of velocity of sound using Kunds tube.
- 14. Determination of frequency of an electrically maintained tuning fork
- 15. To verify the laws of transverse vibration using sonometer.
- 16. To verify the laws of transverse vibration using Melde's apparatus.
- 17. To compare the mass per unit length of two strings using Melde's apparatus.
- 18. Frequency of AC by using sonometer.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

U23PHS23 - ELECTRONICS IN EVERDAY LIFE

2Hours/2 Credits

Objective:Tomakenonphysicsstudentsunderstandbasicelectronicconceptsanditsapplications in dailylife.

UNIT IFUNDAMENTALS

Electrical and Electronic symbols – Resistors -Capacitors – Resistance wale – Capacitorwale–Electricalquantities–Electricalformulas–Magnetism–Meters– FusewireTransistors –Integratedchips.

UNITIIELECTRICALAPPLIANCES

Switchboard – Main box – Metal circular breakers (MCB) – AC – DC currents – Twophase – Three phase electrical connections – generators – uninterrupted power supply (UPS) –stabilizer– voltageregulators – Electrical devices–Iron box– Fan

UNITIHELECTRONICHOMEAPPLIANCES

Radio–Audiotaperveaulem, speaker–televisions–VCR–CDPlayer–DVD– calculators – Computers – Block diagram of a computer – Input device – Memory device –control unit – Arithmetic and logic unit – output device – microprocessor – RAM –ROM –scanner– printer– Digital camera–LCD Projectors – Displaydevices

UNITIVCOMMUNICATIONELECTRONICS

 $\label{eq:optical fiber cables} Principles of optical fiber cables (OFC) - Telephone - Mobile Phones - wireless \\ phone - Antenna-Internet - Intranet$

UNITVSAFETYMECHANISM

Handling electrical appliances – power saving methods – hazards prevention methods –protectionofHi-Fi electronic devices.

BooksforStudyandreference:

- 1. S.S.Kamble-ElectronicsandMathematicsData Book-AlliedPublishersLtd-1997
- 2. WilliamDavidCooper,ElectronicandInstrumentationandMeasurementTechnique(2ndEditi on), 1978.